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Abstract
The empirical relationship between total phosphorus and chlorophyll has guided lake management decisions

for decades, but imprecision in this relationship in individual lakes limits the utility of these models. Many
environmental factors that potentially affect the total phosphorus-chlorophyll relationship have been studied,
but here we hypothesize that imprecision can be reduced by considering differences in the proportions of phos-
phorus bound to three different “compartments” in the water column: phosphorus bound in phytoplankton,
phosphorus bound to suspended sediment that is not associated with phytoplankton, and dissolved phospho-
rus. We specify a hierarchical Bayesian network model that estimates phosphorus associated with each compart-
ment using field measurements of chlorophyll, total suspended solids, and total phosphorus collected from
reservoirs in Missouri, United States. We then demonstrate that accounting for these different compartments
yields accurate predictions of total phosphorus in individual lakes. Results from this model also yield insights
into the mechanisms by which lake morphometric and watershed characteristics affect observed relationships
between total phosphorus and chlorophyll.

Empirically estimated relationships between total phospho-
rus (TP) and chlorophyll (Chl) have provided a basis for lake
management for over four decades. This relationship was ini-
tially identified in Connecticut and Japanese lakes (Deevey
1940; Sakamoto 1966), and subsequently extended to a broad
range of temperate lakes in the mid-1970s (Dillon and Rigler
1974; Jones and Bachmann 1976; Carlson 1977). These early
analyses regressed Chl on TP and reported similar coefficients
showing the ratio of Chl:TP increased with lake trophic state.
Over time, scores of published relationships have explored the
veracity of this relationship (McCauley et al. 1989; Prairie
et al. 1989; Jones and Knowlton 2005; Filstrup et al. 2014),
assessed sources of residual variation, and tested the limits of
applicability to different regions and lake types. Variations in
the relationship have been attributed to differences in lake
depth (Pridmore et al. 1985), TN:TP ratio (Smith 1982; Prairie
et al. 1989; Molot and Dillon 1991), grazing by zooplankton
and mussels (Mazumder 1994; Mellina et al. 1995), landscape
characteristics (Wagner et al. 2011), and light limitation
(Hoyer and Jones 1983; Knowlton and Jones 2000; Havens
and Nürnberg 2004). Regional studies have evaluated the rela-
tionship as influenced by edaphic and climatic factors in loca-
tions such as Canada (Prepas and Trew 1983), Argentina,
(Quirós 1990), the United Kingdom (Spears et al. 2013), and
Europe (Phillips et al. 2008). Recently, lake classifications have

improved the precision and accuracy of this relationship
(Yuan and Pollard 2014).

When seasonal averages of TP and Chl are used in cross-
system analysis over a broad trophic range, a relatively precise
relationship is frequently observed (Knowlton et al. 1984;
Jones et al. 1998). In these types of analysis, mean values of
TP and Chl are computed, so the effects of within-lake vari-
ability are reduced, improving the precision of the estimated
relationship. Relationships between TP and Chl within indi-
vidual lakes, however, often exhibit substantial variability
about the overall mean. Some of this variability can be attrib-
uted to using measurements from single samples to estimate
these relationships (increasing the effects of sampling variabil-
ity), while additional variability has been attributed to differ-
ences in lake characteristics that affect the efficiency with
which phosphorus is converted to algal biomass (Smith and
Shapiro 1981; Rast et al. 1983). In most management applica-
tions, accurate predictions of response in individual lakes are
needed for supporting decisions, and so, variability in TP-Chl
relationships among lakes limits the utility of these models.

A TP measurement is comprised of P contained within dif-
ferent compartments, including P bound in phytoplankton, P
bound to suspended sediment, and dissolved P
(i.e., chemically dissolved P and P bound to particles small
enough to pass through a filter) (Effler and O’Donnell 2010).
In many lakes much of measured TP is associated with phyto-
plankton, and so, differences in phytoplankton biomass
among lakes would be associated with differences in both Chl*Correspondence: yuan.lester@epa.gov

1

https://orcid.org/0000-0002-9462-824X
mailto:yuan.lester@epa.gov


and TP, yielding a strong correlation between the two (Lewis
and Wurtsbaugh 2008). In other lakes, high concentrations of
suspended sediment contribute to TP and affect the observed
TP–Chl relationships (Jones and Knowlton 2005). When esti-
mating TP–Chl relationships, lakes with high concentrations
of suspended sediment show low Chl:TP ratios relative to
the average pattern (Hoyer and Jones 1983; Jones and
Knowlton 2005).

Here, we describe an alternate approach for modeling the
relationship between TP and Chl in which we explicitly model
the contributions of different compartments to observed
TP. In doing so, we reverse the positions of TP and Chl in the
model equation, seeking to explain variations in TP in various
compartments, rather than seeking to explain variation in
Chl. We illustrate our modeling approach with data collected
from Missouri (MO) reservoirs, and we hypothesize that this
new model can better account for variability in TP–Chl rela-
tionships among lakes.

Data
Monitoring data collected by the University of Missouri in

155 reservoirs during summers 1989–2016 were used for this
analysis (Fig. 1). Missouri reservoirs vary broadly in their char-
acteristics, ranging from relatively clear conditions in the for-
ested south to turbid conditions in the agricultural north
(Jones et al. 2008a). Composited surface samples were col-
lected from most reservoirs three to four times during May–
August near the dam. Samples were transported on ice to a
field laboratory and processed by a standard methodology
(Knowlton and Jones 1995). Total suspended solids (TSS) were
determined by filtering a known volume of lake water through
a Whatman934-AH filter (nominal filter size: 1.5 μm) that was
prerinsed, dried, ashed, and tared. Chl (uncorrected for degra-
dation products) was measured from material retained on a

1 μm Gelman AE filter, while TP was measured from the whole
water sample.

In 2004, more intensive measurements were collected from
15 lakes. In these weekly samples, measurements of TP in fil-
trate (i.e., dissolved TP or dTP) were recorded. We used these
measurements to test whether the model specified below accu-
rately estimated dTP.

We also assembled watershed land use, quantified by the
proportion of the upstream catchment used for row crop agri-
culture, and morphometric characteristics for each of the lakes
in the data set. Lake morphometric data included lake mean
depth, volume, flushing rate, and the ratio between lake sur-
face area and catchment area.

At least 20 samples were available from each of the 155 res-
ervoirs included in the data set, although in some locations,
over 100 samples were available. The total number of samples
was 7948.

Statistical analysis
We specified a model to estimate contributions to TP from

three components: dissolved P, P bound to nonphytoplankton
sediment, and P bound in phytoplankton. Direct measure-
ments of nonphytoplankton sediment were not available.
Instead, TSS was measured, which, like TP, includes contribu-
tions from both nonphytoplankton and phytoplankton com-
ponents. So, modeling the network of the relationships
among TSS, TP, and Chl is necessary to accurately estimate
contributions from the three components of TP. A hierarchical
structure is also specified in the model, such that different
coefficient values are estimated for each reservoir in the data
set, and hyper-distributions are used to specify the relation-
ships among these coefficients. These hierarchical structures
are described in detail below.

In the first relationship in the network, TSS was modeled as
the sum of two components: (1) suspended sediment that is
directly associated with phytoplankton biomass, or autoch-
thonous suspended sediment (SSaut) and (2) suspended sedi-
ment associated with all other sources (SSnp, or
nonphytoplankton suspended sediment) (Fig. 2). This second
component of suspended sediment includes sediment sup-
plied by allochthonous sources and sediment resuspended
from the lake basin (Hamilton and Mitchell 1996). We
assumed that SSaut is directly proportional to Chl (Jones et al.
2008b), a measure of algal biomass, and therefore, we
expressed a model relationship for the components of TSS as
follows:

TSS= SSnp + SSaut = SSnp + bChl
k ð1Þ

where we assumed that the amount of SSaut associated with
each unit of Chl varied with algal composition (Nalewajko
1966; Stabel 1986), which in turn, varied with trophic condi-
tions (Godfrey 1982). Therefore, we expressed the second term
of Eq. (1) as a power function of Chl.Fig. 1. Locations of sampled reservoirs.
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Measurements of TSS and Chl were highly skewed, and log
transformations were required to effectively fit the model rela-
tionship to observed data:

log TSSj
� �

= log SSnp,j + bChl
k
j

� �
+ eTSS,j ð2Þ

where the subscript, j, refers to measurements in different
samples, and eTSS,j is a normally distributed random error with
a mean of zero and a standard deviation of σTSS. The coeffi-
cient, b, was assumed to be log-normally distributed to con-
strain it to positive values, while the exponent, k, was
assumed to be normally distributed.

We next assumed that the mean concentrations of SSnp
varied among lakes and that the concentration of SSnp esti-
mated for each sample could be modeled as a log-normal dis-
tribution about the lake specific mean value of SSnp:

log SSnp,j
� ��N μa,i j½ �,σa

� �
ð3Þ

where μa,i is the mean value of log(SSnp) for lake i,
corresponding to sample j, and σa is the standard deviation of
the distribution of individual measurements of SSnp. The set
of values for μa,i are then assumed to be drawn from a single
normal distribution:

μa,i �N μ,σμ
� � ð4Þ

where μ and σμ are the mean and standard deviation of this
distribution. This overarching mean distribution loosely con-
strains the possible values of μa,i, while allowing lakes with
smaller amounts of data to “borrow information” from lakes
with larger amounts of data (Gelman and Hill 2007).

Results from the model for TSS are used simultaneously to
estimate contributions to different components of TP. Recall,
we are modeling TP as being composed of contributions from
dissolved P (Pdiss), P that is bound to SSnp, and P that is bound

in phytoplankton. Based on this initial assumption, we can
write the following model relationship:

TP =Pdiss + d1SSnp + d2Chl
n ð5Þ

where the concentration of P bound to non-phytoplankton
suspended sediment is modeled as being directly proportional
to SSnp. Similar to the model for TSS, we assumed that the
quantity of P bound in phytoplankton changes with eutrophi-
cation status, and therefore model it as being proportional to
a power function of Chl.

Log-transformations are required again to fit to observed
data, and so we write the following expression:

log TPj
� �

= log Pdiss,i j½ � + d1,i j½ �SSnp,j + d2,i j½ �Chl
n
j

� �
+ eTP,j ð6Þ

where j indexes individual samples and i[j] indexes different
lakes associated with each sample. The random error eTP,j was
assumed to be normally distributed with a mean of zero and a
standard deviation of σTP.

We hypothesized that the coefficients d1, d2, and the mag-
nitude of Pdiss varied among lakes due to differences in catch-
ment and lake characteristics, so we allowed different lake-
specific values for each of these parameters. Overall, values for
each parameter were assumed to be drawn from log-normal
distributions to constrain them to positive values:

log Pdiss,i
� ��N μdiss,σdissð Þ

log d1,i
� ��N μd1,σd1ð Þ ð7Þ

log d2,i
� ��N μd2,σd2ð Þ

All of the relationships described earlier were fit simulta-
neously to the available data with a hierarchical Bayesian
model (Stan Development Team 2016). Prior distributions for
the hyper-parameters, μ, μdiss, μd1, and μd2 were specified as nor-
mal distributions with mean values of zero and standard devia-
tions much greater than the expected value of the parameter to
ensure that the prior distributions did not influence the results.
Prior distributions for standard deviations, σμ, σdiss, σd1, σd2,
σTSS, and σTP were similarly noninformative, specified as half-
Cauchy distributions with scale parameters much greater than
the expected values of the parameters. Prior distributions for
the two exponents, n and k, and for the coefficient, log(b), were
also noninformative normal distributions.

For comparison, we fit a simple linear regression model of
the following form:

log TPj
� �

= c1 + c2log Chlj
� �

+ ej ð8Þ

where c1 and c2 are regression coefficients and ej is a normally
distributed residual error. The form of this equation is similar

Fig. 2. Schematic representation of Bayesian network. Pdiss: dissolved
phosphorus, Chl: Chlorophyll concentration, TSS: total suspended solids,
TP: total phosphorus, and SSnp: nonphytoplankton suspended solids.
Shaded boxes indicate variables that are estimated in the model. Parame-
ter labels next to arrows indicate coefficients estimated by the model (see
text). Bolded variable (Pdiss, μa, d1, and d2) indicate parameters for which
lake-specific values are computed.
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to that commonly used to estimate relationships between TP
and Chl except, to facilitate a comparison with the present
model, the dependent variable in this formulation is TP.

We assessed the performance of the model by quantifying
the error in model predictions of TP with mean square error
(MSE), defined as follows:

MSE=
1
N

XN

i=1
log TPpred,i

� �2− log TPobs,i
� �2� �

ð9Þ

where N is the number of samples, TPpred is the predicted TP
concentration, and TPobs is the observed TP concentration.
Using this metric to examine prediction error allowed us to
quantify the relative contribution of different lake-specific
coefficients to the predictive performance of the model. More
specifically, we computed several different predictions of TP as
follows: (1) the simple linear regression model prediction of
TP, (2) the full Bayesian network model prediction of TP,
using lake-specific coefficients for Pdiss, d1, and d2, (3) the
“regional” Bayesian network model prediction of TP using the
overall mean values for these same coefficients: μdiss, μd1, and
μd2, and (4) separate coefficient model predictions of TP, each
using one of the lake-specific coefficients (Pdiss, d1, or d2) and
overall mean values for the other two. Based on the MSEs for
each of the model predictions, we could estimate the propor-
tional improvement in model accuracy associated with incor-
porating lake-specificity for each of the different model
coefficients.

To help visualize the effects of modeling contributions of
Pdiss and SSnp to TP, we computed an “adjusted” value of TP
(TPadj) by subtracting the contributions of Pdiss and SSnp from
observed values of TP:

TPadj,j =TPj−Pdiss,i j½ �−d1,i j½ �SSnp,j ð10Þ

We then compared plots of TP vs. Chl and TPadj vs. Chl for
different lakes.

Finally, we explored whether lake catchment characteristics
and morphology were associated with the values of each of
the lake-specific coefficients (Pdiss, d1, and d2). Our intent for
this data exploration was to identify potential linkages for
future research, and to that end, we only computed Pearson
correlation coefficients, and reported on watershed and lake
morphological characteristics that were strongly correlated
with the lake-specific coefficient values.

Results
Observations of TSS, Chl, and TP in the data set spanned a

broad range of conditions (Table 1). TSS was correlated with
Chl, and a distinct lower boundary in the scatter of data was
evident (Fig. 3). The model relationship defining this lower
boundary can be computed by setting SSnp to zero in Eq. (2).
Then, after simplifying, we can write log(TSS) = log(b) + klog

(Chl). So, when SSnp is negligibly small, the relationship
between SSaut and Chl is a straight line in the plot of log(Chl)
vs. log(TSS) (solid line in Fig. 3). Deviations in sampled values
above this line show the contribution of SSnp to the overall
TSS measurement. Small deviations below this line can be
attributed to sampling variability of TSS and was estimated as
σTSS = 0.26. Mean values of log(b) and k estimated from the
model were − 0.51 (−0.56, −0.46) and 0.67 (0.66, 0.68) (90%
credible intervals shown in parentheses). Based on the func-
tional form we assumed for the relationship between TSS and
Chl, we can infer that the contribution of phytoplankton to
TSS (i.e., SSaut/Chl) is proportional to Chl-0.33. That is, as Chl
increases, the amount of suspended sediment associated with
each unit of Chl decreases, a trend which is consistent with a
shift from diatom-dominated assemblages to green algae and
cyanobacteria dominated assemblages (Nalewajko 1966).

Limiting relationships that estimate the P-content of phy-
toplankton biomass and SSnp can also be calculated (Fig. 4).
For phytoplankton biomass, this limiting relationship is calcu-
lated by setting Pdiss and SSnp in Eq. 6 to zero, yielding the fol-
lowing, log-transformed relationship: log(TP) = log(d2) + n log
(Chl). Different values of d2 were estimated for each lake, but
the distribution of these values is characterized by an overall
mean and a standard deviation (Table 2). The untransformed
mean value of d2 among all lakes was 2.4 (2.0, 2.8), and the
mean value of the parameter n was 0.69 (0.65, 0.72). The
straight line based on these two parameter values represents P
associated with phytoplankton biomass, as quantified by Chl,
and it closely tracks the lower limit of the observed data (solid
line, left panel Fig. 4). Again, small deviations below this line
can be attributed to sampling variability of TP and was esti-
mated as σTP = 0.19.

For SSnp, setting Pdiss and Chl to zero yields the following
relationship: log(TP) = log(d1) + log(SSnp). The coefficient d1 also
varied among lakes, with an overall mean value of 5.5 (4.9, 6.1).
In this case, the limiting relationship corresponds to a line with
an intercept of log(5.5) and a slope of 1 (right panel, Fig. 4).

In untransformed units, values of Pdiss ranged from 0.6 to
95.9 μg L−1 among the 155 lakes in the data set, while the P
content of SSnp (d1) ranged from 0.10% to 6.2% (Table 2).
Mean values of SSnp (μa) ranged from 0.16 to 30.9 mg L−1.

The P-content of autochthonous material is a function of
both the coefficient d2 and Chl. More specifically, we can
express the P-content of autochthonous material as a Chl
yield as follows,

Chl
P

=
Chl1−n

d2

Hence, Chl/P increases with Chl concentration at a rate
proportional to Chl1−n, or Chl0.31 (n was previously estimated
as 0.69). Because d2 varies among lakes, the relationship
between Chl/P and Chl also varies among lakes, but the lake-
specific relationships generally clustered tightly about the
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relationship based on overall mean values (Fig. 5). For compar-
ison, Jones and Bachmann (1976) estimated log(Chl) = −1.09
+ 1.46 log(TP), and to plot this relationship on the same axes,
it can be reexpressed as Chl/TP = 0.18 Chl0.315. This relation-
ship (dashed line in Fig. 5) is located below all of the lake-
specific relationships estimated in the current analysis, a dif-
ference that stems from the fact that the Jones and Bachmann
(1976) relationship is based on TP, which includes

contributions from both Pdiss and P bound to SSnp, whereas
the current relationship is an estimate only of P bound in phy-
toplankton. Hence, TP values in Jones and Bachmann (1976)
are higher than those in the current relationship, and Chl/P is
lower. The current estimate of the exponent on Chl and that
of Jones and Bachmann (1976) are strikingly similar, though.

One assumption in this model is that differences in TP con-
centration not correlated with SSnp or Chl provided an esti-
mate of Pdiss. In the subset of lakes for which measurements of
the dissolved fraction of TP (dTP) were recorded (n = 15), we
compared these measurements with estimates of mean Pdiss in
each lake (left panel, Fig. 6). The estimated values of Pdiss
defined a lower bound for observations of dTP (dashed line in
plot), but in many lakes observed dTP concentrations were
substantially greater than the model estimate. Closer examina-
tion of the measurements of dTP in the lakes in which Pdiss
underestimated dTP indicated that measurements of dTP were
strongly associated with SSnp. One example of this association
shown in the right panel (Fig. 6).

The MSE of the full model prediction of log(TP), using lake-
specific values for all the parameters in the model, was 0.02,
whereas the MSE of the “regional” model in which we com-
puted predictions for log(TP) using overall mean values for the
coefficients (μdiss, μd1, and μd2) was 0.15. The MSE based on a
simple linear regression fit to the data was 0.29, so prediction
error of the full Bayesian network model was only 7% of the

Table 1. Summary statistics of observed variables.

5th percentile 25th percentile Median 75th percentile 95th percentile

Chl (μg L−1) 1.7 5.8 14.1 29.6 75.0

TP (μg L−1) 8 19 36 63 140

TSS (mg L−1) 1.4 3.4 6.1 10.0 19.8

Fig. 3. TSS vs. Chl. Open circles: all sampled values, solid line: estimated
suspended solids concentration associated with Chl calculated by setting
contribution of SSnp to zero.

Fig. 4. Relationship between TP and different contributing components. Left panel: TP vs. Chl, right panel: TP vs. SSnp. Open circles: observed data.
Solid line (left panel): estimated phosphorus concentration associated with Chl calculated by setting dissolved P and P associated with SSnp to zero. Solid
line (right panel): estimated phosphorus concentration associated with SSnp calculated by setting P associated with Chl to zero.

Yuan and Jones Phosphorus–chlorophyll relationships

5



error of the simple linear regression. When lake-specific values
for Pdiss were used instead of μdiss in the regional model, the
predictions of log(TP) accounted for 34% of the difference in
MSE between the full model and the regional model. Includ-
ing lake-specific values for d1 accounted for 45% of the

difference, while including lake-specific values for d2 only
accounted for 18% of the difference.

MSE estimates based on individual lakes mirrored trends
observed using the full data set. When different simple linear
regression models were fit to data from each lake, MSE values
ranged from 0.02 to 0.52. MSE values for each lake could also
be computed using the full Bayesian network model and lake-
specific coefficient values and these ranged from 0.01 to 0.06.
MSE values based on the Bayesian network model were less
than those estimated by simple linear regression for all but
three lakes, and on average, reduced the MSE by 70%.

In individual lakes, accounting for Pdiss and SSnp markedly
improved the qualitative strength of the association between
TP and Chl. For a lake with relatively low concentrations of
SSnp (left panel, Fig. 6), plotted values of unadjusted TP were
only slightly greater than adjusted TP, but the variance in
values about the mean relationship was reduced. In other
lakes, SSnp concentrations were high and variable, and the
effects on the TP–Chl relationship were strong. In the example
lake shown (right panel, Fig. 7), raw measurements of TP and
Chl exhibited a weak relationship, whereas adjusted TP was
strongly associated with Chl.

Striking differences were observed in the amount of phos-
phorus associated with different compartments in these two
example lakes. On average, in Sims Valley Lake, nearly 65% of
phosphorus is bound in phytoplankton (Fig. 8), whereas in
the entire data set, 46% of phosphorus is bound in phyto-
plankton. In contrast, in Manito Lake, over 75% of phospho-
rus in the samples collected were associated with SSnp, and
only 18% was bound in phytoplankton.

Lake-specific values for Pdiss were negatively associated with
depth (r = −0.48) (Table 3), whereas the mean concentration
of SSnp (μa) increased with percentage crops (r = 0.44). Correla-
tions between d1 (the P-content of SSnp) with different lake
characteristics were all weak, with all correlation coefficients

Table 2. Mean values of parameters that defined the distribu-
tions of lake-specific model coefficients. Ninety percent credible
intervals in parentheses.

Mean Standard deviation

μa 0.54 (0.40, 0.67) 0.95 (0.86, 1.06)

log(Pdiss) 1.74 (1.46, 1.96) 1.05 (0.92, 1.22)

log(d1) 1.70 (1.59, 1.81) 0.67 (0.60, 0.76)

log(d2) 0.87 (0.71, 1.04) 0.27 (0.23, 0.31)

Fig. 5. Chlorophyll yield. Gray lines: relationships for individual lakes.
Black line: overall mean relationship. Dashed line: Chl/TP ratio predicted
by Jones and Bachmann (1976).

Fig. 6. Left panel: Comparison of estimated Pdiss vs. observed dissolved total phosphorus (dTP). Vertical segments show the range of observed values of
dTP for each lake. Open circle shows the mean dTP for each lake. Dashed line shows 1:1 relationship. Right panel: Relationship between individual mea-
surements of dTP and SSnp for the site indicated in the left panel with a filled circle.
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less than 0.2. Lake-specific values of d2 quantified differences
among lakes in the P-content of autochthonous material
beyond what could be attributed to differences in trophic sta-
tus. Values of d2 were weakly correlated with lake depth
(r = −0.37).

Discussion
The new approach for modeling relationships between TP

and Chl improves the accuracy of predictions and yields
insights into the causes of variability in these relationships in
individual lakes. The Bayesian network model simultaneously
represents different relationships linking measurements of TSS,
Chl, and TP, and by doing so, the model explicitly estimates

contributions from three different components of TP: Pdiss,
P bound to sediment, and P bound in phytoplankton.

In the first stage of the network model, we estimated com-
ponents of TSS associated with phytoplankton vs. components
of TSS associated with other sources (including allochthonous
loads and resuspended sediment). A comparable laboratory
approach to distinguish between sources of TSS is to measure
nonvolatile and volatile components of sediment and to
assume that the volatile fraction characterizes the contribution
from phytoplankton (Knowlton and Jones 2000). However,
samples in this study span the eutrophication gradient, and
the shift along this gradient from diatom-dominated assem-
blages that are ~30–50% ash to green algae that are ~10% ash
(Nalewajko 1966) would introduce errors in the laboratory
approach. Assumptions underlying the statistical approach
also may introduce errors. We assumed that, after accounting
for eutrophication status and lake-specific characteristics, the
proportion of TSS associated with each unit of Chl is fixed. In
reality, this proportion can vary in time and space. However,
the clearly defined lower boundary in the plotted relationship
between Chl and TSS and the correspondence between the
modeled limiting relationship and this boundary lends empiri-
cal support to the validity of our assumptions.

The current model increased the accuracy of predictions of
TP based on Chl, addressing a long-standing issue with TP-Chl
models in which relationships within individual lakes have

Fig. 7 Performance of TP-Chl model for two lakes (left panel: Sims Valley Lake, right panel: Manito Lake). Open circles: instantaneous samples of Chl
and TP; filled circles: TP adjusted for Pdiss and SSnp vs. observed Chl; solid line: predicted relationship between TP and Chl from Eq. (6).

Fig. 8 Mean proportion of TP associated with different compartments
for Manito, Sims Valley Lake, and all data. Leftmost dark gray segment:
Pdiss; middle gray segment: P bound to SSnp; rightmost light gray seg-
ment: P bound to phytoplankton. Vertical line segments show the stan-
dard deviation of proportions among samples collected from each lake.

Table 3. Correlation coefficients between lake-specific model
parameters and lake morphological and watershed
characteristics.

Flush rate Volume Area ratio Depth Crops

μa 0.08 −0.09 0.08 −0.34 0.44

Pdiss 0.11 −0.33 0.02 −0.48 0.39

d1 −0.03 0.06 −0.05 0.03 0.18

d2 0.26 −0.30 0.16 −0.37 0.14
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varied substantially from a cross-system relationship based on
mean values of TP and Chl from different lakes (Smith and
Shapiro 1981; Spears et al. 2013). As described in the Introduc-
tion, previous studies have accounted for differences in
observed Chl by examining covariates, whereas this analysis
suggests that a primary source of variability in TP–Chl rela-
tionships derives from differences in SSnp, which alters the
concentration of TP measured in a sample. Relationships
based on measurements of TP and Chl in individual lakes ben-
efit most from this adjustment because episodic loads of SSnp
exert the strongest effects on individual measurements
(Knowlton and Jones 1995). In contrast, seasonal averages of
TP and Chl in a lake reduce the effect of SSnp to a single mean
value. This mean contribution of SSnp then exerts a weaker
influence on cross-system relationships estimated using sea-
sonal averages, a phenomenon that may explain the similarity
of the values of the exponent on Chl estimated from the cur-
rent study and that estimated from analysis of seasonal mean
TP and Chl (Jones and Bachmann 1976).

The present approach for modeling contributions to TP
from different compartments refines our understanding of fac-
tors affecting chlorophyll yield, or Chl/TP. Our model explic-
itly defines the amount of P bound in phytoplankton and
suggests that this quantity (Chl/P) varies mainly with eutro-
phication status. Others studies have observed wide variation
in Chl/TP among lakes (Spears et al. 2013). Our model sug-
gests that use of TP to compute this ratio introduces a bias
from nonalgal sources of TP that yields generally lower values
of Chl/TP and greater variability among lakes. We further
found that differences in the P-content of phytoplankton
accounted for a small proportion of the overall prediction
error, and hence, relative to other contributors to TP, a fixed
coefficient reasonably accounts for the contribution of P
bound in phytoplankton in most lakes. That is, after account-
ing for eutrophication status of a lake, the Chl yield of phos-
phorus (i.e., Chl/P) is nearly constant. The P-content of
phytoplankton has been studied extensively and varies with
factors such as species composition (Martiny et al. 2013),
nutrient availability (Hecky et al. 1993), and light intensity
(Sterner et al. 1997). This analysis suggests, however, that in
the context of understanding variations in field observations
of TP and Chl, factors influencing phytoplankton P-content
beyond the species compositional changes occurring with
eutrophication are relatively unimportant, which is consistent
with the principles of stoichiometric homeostasis (Elser and
Sterner 2002). The analysis approach described here may facil-
itate further comparisons between stoichiometry estimated
from lab studies (Klausmeier et al. 2008; Persson et al. 2010)
and from field data (Yuan and Jones 2019). Changes in Chl/TP
observed in other field studies may also be explained by con-
sidering the changes in the proportion of TP associated with
phytoplankton. For example, a decrease in Chl/TP has been
observed in response to zebra mussel grazing, which is consis-
tent with preferential filtering of phytoplankton from the

water column, leaving inorganic sediment (Nicholls et al.
1999). Changes in Chl/TP observed in Missouri reservoirs in
previous analyses are also consistent with an increase in TP
associated with SSnp (Knowlton and Jones 2000).

Variations in Pdiss and the P-content of SSnp exerted strong
effects on the accuracy of model predictions of TP and under-
standing the causes of these variations would improve predic-
tions in different lakes. Our initial exploration of the effects of
lake characteristics on these contributors to TP was not exhaus-
tive but provide the basis for future studies. Most trends were
consistent with an understanding of lake processes and with
past studies. For example, the strong negative relationship
between estimates of Pdiss and lake depth likely reflects the con-
tribution of resuspended sediment to the overall TP budget
near the surface (Krogerus and Ekholm 2003). That is, the like-
lihood of observing resuspended sediment in the surface layer
decreases with greater lake depths (Bloesch 1995). The negative
relationship between lake depth and mean SSnp (i.e., μa) further
supports this mechanism. For Pdiss, this mechanism is predi-
cated on the assumption that a proportion of Pdiss consists of P
bound to sediment fine enough to pass through the filters.
Nephelometric measures of filtrate turbidity in previous studies
supports this interpretation (Knowlton and Jones 2000).

Model estimates of Pdiss accurately identified a lower bound
to dTP, but in many lakes, dTP was substantially greater than
estimated Pdiss. This difference illustrates the contrast between
a statistical approach for estimating components of TP and
direct measurements. The direct measurement, dTP, is partly
determined by the filter pore size used to extract suspended
solids from the whole water sample. Phosphorus passing
through the filter is designated as dissolved, whether it is
chemically dissolved in the water or bound to fine sediment.
Conversely, Pdiss in the statistical model is defined as any pro-
portion of TP that is uncorrelated with Chl and SSnp. In cer-
tain lakes, dTP varied directly with SSnp, suggesting that the
sources of SSnp are also the sources of dTP. In these lakes, the
statistical estimate of Pdiss underestimated dTP. In other lakes,
luxury uptake of P may have increased the P-content of phyto-
plankton, but this variability would not be associated with
Chl or SSnp (Bonachela et al. 2011), and likely would be attrib-
uted to Pdiss in the current model. Neither direct measurement
by filtering nor statistical analysis provides an estimate of truly
dissolved P or soluble reactive P, nor provide measurements of
biologically available P (BAP) or steady-state phosphate con-
centrations (Butkus et al. 1988; Hudson et al. 2000; Reynolds
and Davies 2001). Understanding the biases associated with
each method, however, can help interpret their meaning in
subsequent analyses.

Differences in filter pore size may slightly influence the
applicability of the current results to other data sets, but two
factors mitigate this potential effect. First, recent analysis has
found that filter pore size does not significantly affect TSS
measurements because all pores are clogged similarly by
deposited sediment (Kasper et al. 2018). Second, because TP is
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modeled as contributions from different compartments, con-
sistency between the filter used to measure Chl and the filter
used to measure TSS is a more important consideration than
the actual pore size. With our data set, filter pore size was
selected to ensure that the same methods could be used in
clear lakes in southern MO and turbid lakes in northern
MO. Because the pore size used to extract material for Chl
analysis was comparable to that used to measure TSS, the data
are internally consistent, and estimates of P associated with
phytoplankton are robust. The similarity between limiting
relationships between Chl and TP derived in MO with those
derived in a national data set (collected with finer filters) also
supports this conclusion (Yuan and Jones 2019).

Positive relationships between croplands in the watershed
with the mean concentration of SSnp was consistent with pre-
vious observations (Jones et al. 2008a). Surprisingly, though,
the amount of P bound to SSnp varied considerably among
lakes, ranging from 0.1% to 6.2% of the mass of SSnp, but no
patterns emerged with regard to lake or watershed characteris-
tics. The absence of strong relationships likely suggests that
the metrics included in the analysis did not adequately repre-
sent the potential causes of differences in sediment P. For
example, P bound to allochthonous sediment may be more
strongly associated with local farming practices (e.g., timing,
amount, and type of fertilizer applied and tillage and cover
crops practices), condition of stream banks and severity of
stream bank erosion in the watershed, and specific soil charac-
teristics in the watershed (Pote et al. 1996). Also, shoreline
erosion can vary substantially depending on fetch and littoral
vegetation (Hamilton and Mitchell 1996). The potential for
resuspended sediment to contribute to SSnp also introduces
another source of variability in d1, as we would expect lakes to
sequester different amounts of P in their sediment. The strong
effect of variations in d1 on the accuracy of TP predictions sug-
gests that the collection of some lake-specific data would be
necessary to understand changes in TP. Much of the P bound
to SSnp is not biologically available (Reynolds and Davies
2001), though, and the presence of unknown amounts of P
associated with SSnp may not be important if the ultimate goal
is to predict Chl.

An accurate prediction of Chl resulting from phosphorus
loads provides an important tool for managing lake eutrophi-
cation, and methods to make these predictions have been the
focus of substantial past research. One common approach for
making these predictions is to empirically relate P loading
directly to Chl concentration (Vollenweider and Kerekes 1982;
Rast et al. 1983), such that a targeted Chl concentration can
be directly translated into a targeted P load. Others have advo-
cated the use of a two-stage model, in which empirical TP–Chl
relationships are first used to estimate TP concentrations that
correspond with a desired concentration of Chl (Nicholls
1997). Then, a loading model is used to estimate the P loads
that will achieve the desired TP concentration (Ahlgren et al.
1988; Brett and Benjamin 2008). This latter approach may

yield more accurate predictions because an appropriate
regional or local TP–Chl relationship could be applied.

Our model suggests that the relationship of Chl yield per
unit of P is relatively stable among different lakes, such that
an increase or decrease in BAP should result in a predictable
change in Chl, regardless of differences in lake characteristics.
Other limiting factors (e.g., light, nitrogen) can influence
whether all BAP is actually converted to Chl, but the Chl/P
relationships specified here can provide the limit imposed by
available P. Comparison of Chl predicted by different limiting
factors can then potentially provide a simple approach for
predicting lake condition (Reynolds and Maberly 2002). Use
of this relationship may also improve the accuracy of predic-
tions from yield-based process models (Gowen et al. 1992).
Ultimately, the current analysis suggests that the relationship
between P and Chl estimated here may be broadly applicable
to other locations (Yuan and Jones 2019), and additional anal-
ysis of different data sets will further our understanding of fac-
tors influencing this relationship.
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